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Abstract

In computational analysis of damage failure the strain delocalizations are of great importance in predicting as-

sessment of structure integrity. In this paper we are investigating effects of the intrinsic material length on computa-

tional prediction of material failure using both cell model, i.e. the conventional micro-mechanical damage model with

the constant–sized finite elements for the damage zones, and nonlocal damage model based on the gradient plasticity.

The corresponding experiments performed for an engineering steel are taken as reference for verification. The experi-

mental observation has revealed that reducing the specimen size will arise the specific strength of small notched

specimen which cannot be predicted using the cell damage model. The nonlocal damage model based on the strain

gradient-dependent constitutive plasticity theory reproduces the experimental records. The material length affects

evolution of the material porosity and gives an understandable explanation of the size effect.
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1. Introduction

Ductile material failure is characterized by the micro-void nucleation, growth and coalescence mecha-
nism. The damage model (GTN model), originally introduced by Gurson (1977) and modified by Tver-

gaard and Needleman (Tvergaard, 1981; Tvergaard and Needleman, 1984), is attractive since it is not

derived from purely heuristic arguments, but from micro-mechanical analysis. The yield function of the

GTN model accounts for voids in terms of one single internal variable, i.e. the void volume fraction or the

porosity. A micro-void initiates and grows due to high plastic strains or high stress triaxiality (Chu and

Needleman, 1980). One may imagine that the initiation and propagation of the micro-void depend on both

amplitude and distribution of the equivalent plastic strain as well as the stress triaxiality in the vicinity of

the micro-void. It means that the evolution of material damage is practically a nonlocal process. These
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observations imply that there is a need for such micro-mechanical approach to incorporate an intrinsic

material length parameter into the constitutive relation (Hutchinson, 2000).

Nonlocal forms of the GTN model in which the strain delocalization is realized by delocalization the

damage variable, i.e. the porosity, have been developed by Leblond et al. (1994), Tvergaard and Needleman
(1995) and so on. The basic idea is that the effect and evolution of the porosity should be changed in order

to eliminate the strain localization because the matrix itself is described by the stable Mises plasticity. The

porosity will be averaged in a small neighboring region. From numerical point of view, such approach is

similar to the technique to fit a constant-sized finite elements to the material micro-structure (Brocks et al.,

1995; Xia and Shih, 1995), in which the size of the so-called cell elements is chosen to be representative of

the mean spacing between voids. It follows that each cell element contains a single void at the initial volume

fraction (Xia and Shih, 1995). Growth and coalescence of the void is related to the stress and strain

averaged over the cell element.
Physically it is argued that the micro-mechanical behaviour cannot be described by the continuum

mechanics on which the finite element method is based. The cell element is taken as the smallest cell which

can be resolved using the continuum mechanics. From fracture energy point of view the fracture energy

dissipation in a finite element is proportional to its size. The constant sized element limits the energy

dissipation for crack growth. It seems to be a kind of regulation of the porosity distribution. In comparison

with the treatments in Leblond et al. (1994) and Tvergaard and Needleman (1995), the cell element method

is a straight way for averaging and very simple for finite element computations. One does not need any

changes in his finite element code to start such simulations. Its application is, however, restricted to crack
analysis in small sized specimens due to increasing computational efforts. In crack tip fields effects of the

element size become essential due to extremely high stress and strain gradients. Varying the element size

may significantly changes the damage zone. Furthermore, there are no systematic study available to ex-

amine the interaction of the cell element size and the local damage evolution, at least in notched specimens.

Interdependence of the cell element size with the strain gradients which vary with the notch radius remains

an open issue.

The additional explanation why one has to use the constant element size is that the smallest element size

should be larger than the void space. The GTN model homogenizes the small representative material
volume containing a micro-void and, therefore, the smallest element size has to be larger than the smallest

representative material volume. According to our opinion such explanations confuses the concept of a

physical model with the numerical method, e.g. the finite element method. The homogenized representative

material volume is described by continuum mechanics equations including the special constitutive equa-

tions. The finite element method is a numerical method to solve the field governing equations. If the

governing equations are well-conditioned, the finite element method does yield a more accurate solution by

using finer finite elements. The finite elements are certainly not related to the representative material vol-

ume, but the accuracy of numerical solution. One may not expect to find the true solution for the repre-
sentative material volume by using one linear or quadratic interpolation of the displacement vector. The

numerical solution obtained from a certainly sized element mesh cannot be the accurate solution for the

damage problem, but an approximation. Since the present problem is so ill-conditioned that the numerical

solutions substantially vary the element size. Why this occurs is certainly not a problem of the finite element

method, but the continuum mechanics model.

An alternative approach to treat material damage nonlocally is to relate the damage evolution with the

higher order gradients of the porosity. Ramaswamy and Aravas (1998) suggested a gradient treatment of

the porosity of the GTN model. In their study, effects of void diffusion, interaction and coalescence have
been considered. Variations of the porosity are characterized by a diffusion equation with a Laplacian of

the porosity. The preliminary results of Ramaswamy and Aravas (1998) confirm the mesh-insensitivity in

the computational prediction. Due to computational complexity there are no results published on size

effects in cracked and notched specimens by using such models.
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All those works mentioned above are concentrating on nonlocal treatment of the damage indicator and

assuming that the intrinsic material length is only related to damage evolution, which is contradictory to the

known experimental observations of significant size effects in plastic deformations of the material matrix by

Fleck and Hutchinson (1993, 1997). The strain localization and size effects are not necessarily only related
to strain softening. In classical plasticity theory strain softening causes strain localization. In computational

modeling the material failure, the strain softening and the strain localization are connected one another.

The material damage results in strain softening and the strain softening causes strain localizations. This

consideration implies that the true reason for strain localization is the strain softening which can be

remedied as shown by de Borst and M€uuhlhaus (1992). If one corrects the strain localization, one can then

predict material failure accurately. On the other hand, it is contradictory to derive a micro-mechanical

model within the frame of macro-mechanical theory. If one wants to consider the mechanical processes in

microscopic scales, the classical continuum mechanics has to be improved. It has motivated us to embed the
micro-mechanical model within a complex continuum theory (Chen and Yuan, 2002; Yuan et al., 2003a).

In the microscopic level we know that the material may show different behaviour, such as the size effect

in plastic deformations due to matrix heterogeneity. A logical consequence is to embed the continuum

damage model into a plasticity theory frame which has the potential to give a more reliable description of

the plastic deformations. In our previous works (Chen and Yuan, 2002; Yuan et al., 2003a) we suggested a

modified GTN model coupled with the gradient plasticity, in which the Aifantis� gradient plasticity model is

used to describe the matrix behaviour. Introducing gradients of plastic strain into the constitutive model

makes material deformations and failure related to the vicinity of the material point. The matrix behaviour
is related with the micro-mechanical property by introducing an intrinsic material length. The material

damage model becomes nonlocal due to the gradient-dependent constitutive description of the matrix.

Numerical examples show that using the finite element formulation the mesh-dependence of damage

localization is remedied (Chen et al., 2002). The intrinsic material length in the gradient plasticity may

have the potential to predict size effects in material failure (Yuan et al., 2003a,b).

In the present paper we are using both cell element model with constant element length (Sun and H€oonig,
1994; Xia and Shih, 1995) and the strain gradient-dependent damage model (Chen and Yuan, 2002; Yuan

et al., 2003a) to predict and to analyze the size effect in a German reactor steel 20MnMoNi55. The ex-
perimental results (Krompholz et al., 2000b) of notched tension specimens are taken as the reference for

comparison. With respect to the experimental records we attempt to give a quantitative comparison be-

tween two models.
2. Damage models

In this section we review the known damage model (GTN model) of Gurson (1977), Tvergaard and
Needleman (1984) and introduce a nonlocal variety of the GTN model within the frame of the gradient

plasticity theory. Attentions are paid to the finite element formulation of the nonlocal damage model.

2.1. The damage model after Gurson, Tvergaard and Needleman (GTN model)

It is generally assumed that the damage of ductile materials begins from micro-voids and defects which

are induced due to, e.g., second phase articles in matrices. Based on analysis of a single cell containing a

central spherical void in a J2 elastic–perfectly plastic solid, Gurson (1977) proposed a micro-mechanical

constitutive model which describes growth and coalescence of micro-voids in a ductile damage process. This

model has been further modified by Tvergaard and Needleman (1984), so that the interaction of micro-

voids as well as damage acceleration due to voids coalescence are considered. The yield function of the
modified micro-mechanical damage model is expressed as
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Uðq; p; f ; ryÞ ¼
q2

r2
y

þ 2q1f cosh
3q2p
2ry

� �
� ð1þ q21f

2Þ ¼ 0; ð1Þ
where the constants q1 and q2 are introduced by Tvergaard and Needleman (1984) to improve predictions

of the model for a periodically distributed void array. p and q are the hydrostatic stress and the effective

stress of the average macroscopic Cauchy stress r respectively. ry is yield stress of the matrix material, and
f is the void volume fraction, i.e. the porosity. The evolution equation for the void volume fraction consists

of both voids nucleation and growth,
_ff ¼ _ffgrowth þ _ffnucleation: ð2Þ
The void growth is described by incompressibility of plastic deformations
_ffgrowth ¼ ð1� f Þ _eepkk; ð3Þ
where _eepij is the plastic strain rate tensor. A strain-controlled nucleation law is suggested by Chu and

Needleman (1980) as
_ffnucleation ¼ A_�ee�eep; ð4Þ
where the parameter A is chosen so that the nucleation strain follows a normal distribution with the mean

value eN and the standard deviation SN. A can be expressed as:
A ¼ fN
SN

ffiffiffiffiffiffi
2p

p exp

2
4� 1

2

�eep � eN
SN

 !2
3
5; ð5Þ
where fN is the volume fraction of void nucleating particles. Based on assumption of the plastic flow

normality, the macroscopic plastic strain increment is evaluated from
_��p ¼ _kk
oU
or

: ð6Þ
The equivalent plastic strain �eep of the matrix material is assumed to vary according to the equivalent plastic

work expression,
ð1� f Þry
_�ee�eep ¼ r _��p ¼ r

oU
or

_kk: ð7Þ
The matrix material is assumed to satisfy the von Mises yield condition. If f ¼ 0, this condition becomes

the conventional von Mises plasticity with k as the plastic multiplier.

2.2. A nonlocal damage model under the gradient plasticity

In the GTN model one only considers that the material failure process is modeled by nucleation, growth

and coalescence of the micro-voids. The matrix at mesoscopic level is treated as a macroscopic continuum

using conventional continuum constitutive relations. Comparing with the known experimental observation

(Fleck and Hutchinson, 1993, 2001), it is an obvious shortcoming in this model (Hutchinson, 2000).

According to recent knowledge, the matrix at microscopic level may have different mechanical properties

from those at the macroscopic dimensions. Strain gradients may significantly change the matrix strength

(Fleck and Hutchinson, 2001). Discussions on the intrinsic material length make it necessary to introduce a

material length into the constitutive equation of the matrix. From this background we postulate the matrix
strength depending on the strain gradients. According to the known results of de Borst and M€uuhlhaus
(1992) the gradient plasticity has the potential to give a more accurate description of the microscopic
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material behaviour (Fleck and Hutchinson, 1993, 2001). In the frame of gradient plasticity suggested by

Aifantis (1987), actual flow stress under multi-axial state depends on both plastic strain and it gradients, i.e.
ryð�eep;r2�eepÞ ¼ �rrð�eepÞ � gr2�eep; ð8Þ

where �rrð�eepÞ denotes the yield stress measured in uniaxial tensile tests and g is a positive coefficient with the

dimension of force. In this paper, g is assumed as g ¼ r0l2 with r0 as the initial yield stress and l as an

intrinsic material length characterizing micro-structures of the material. If the matrix can be described by

the gradient plasticity, we re-write the yield function of the GTN model as
Uðq; p; f ; ryÞ ¼
q2

r2
yð�eep;r2�eepÞ þ 2q1f cosh

3q2p
2ryð�eep;r2�eepÞ

 !
� ð1þ q21f

2Þ ¼ 0: ð9Þ
In the equation above the actual yield stress of the matrix, ryð�eep;r2�eepÞ, is a function of both equivalent
plastic strain and it gradients, represented by r2�eep. Should material failure be accompanied by high plastic

strain gradients, e.g. near a crack tip, the matrix will be substantially strengthened by the gradient term, to

prevent strain localization. Such consideration is consistent to the known experimental observations in

composite materials (Fleck and Hutchinson, 1993).

2.3. A finite element algorithm for the nonlocal damage model

There are many efficient computational algorithms for the GTN model and some of them have been
implemented in the commercial finite element code (ABAQUS, 2001). The cell model uses the standard

algorithm for computations originally suggested by Aravas (1987). The integration algorithm for the GTM

model has been implemented into the ABAQUS code using the user interface UMAT. Details of the im-

plementation are described in ABAQUS (2001) and Aravas (1987) and will not repeat in this paper. In the

following we just review the finite element formulation of the nonlocal GTN model suggested in the pre-

vious section. More details of the algorithm have been reported by Chen and Yuan (2002) as well as by

Yuan et al. (2003a).

Due to the higher order differentiation of the equivalent plastic strain �eep, the conventional finite element
technique based on the C0 interpolation (Zienkiewicz, 1971) becomes inapplicable. A robust computational

algorithm is essential for validation and application of such complex constitutive model.

Let V and V p denote the volume occupied by the body and its plastic part, respectively. S denotes

the surface bounding the volume V and Sp is the elastic–plastic boundary surface of V p, n the normal

vector of the elastic–plastic boundary surface Sp. Following M€uuhlhaus and Aifantis (1991) as well as de

Borst and M€uuhlhaus (1992), the generalized variational about the deformation rate v and k can be ex-

pressed as
dPðr; �eep; dv; d _kkÞ ¼
Z
V
r$dvdV þ

Z
S

�ttdvdS þ
Z
V p

Uðq; p; f ; ryð�eep;r2�eepÞÞd _kkdV þ
Z
Sp

o�eep

on
d _kkdS: ð10Þ
The solution is obtained as soon as the generalized variational dP vanishes,
dPðr; �eep; dv; d _kkÞ ¼ 0: ð11Þ

Neglecting body forces follows two basic weak form equations as
Z

V
dv$rdV ¼ 0; ð12Þ

Z
V
d _kkUðq; p; f ; ryð�eep;r2�eepÞÞdV ¼ 0 ð13Þ
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with an additional boundary condition o�eep=on ¼ 0 on the plastic border Vp. The equations above are

fundamental in the finite element method for the gradient plasticity theory. Note we take the total stress

and total plastic strain in the integrand which is equivalent to the rate variational equation by de Borst and

M€uuhlhaus (1992) and M€uuhlhaus and Aifantis (1991) under infinitesimal displacement assumptions.
Due to the complicated constitutive relation between the plastic multiplier k and effective plastic strain �eep

in Eq. (9), we have to discretise Eq. (7) as the third governing equation for the finite element formulation,
Z
V
d _�eep�eep ð1
�

� f Þry
_�ee�eep � r

oU
or

_kk

�
dV ¼ 0: ð14Þ
The variational equations (12)–(14) build the fundamental of the finite element algorithm for the nonlocal

micro-mechanical damage model within the gradient plasticity.

The basic unknown variables in the equations are the displacement vector (Zienkiewicz, 1971), u, the
equivalent plastic strain �eep as well as the plastic multiplier k, as shown in Fig. 1. The integral expressions will

be converted into algebraic equations by using suitable interpolation functions. We take the following
interpolations for the field variables
uðxÞ ¼ ½NðxÞ�unode; ð15Þ

kðxÞ ¼ ½N1ðxÞ�Kinternal; ð16Þ

�eepðxÞ ¼ ½HðxÞ�!node; ð17Þ

where ½NðxÞ� is the standard 8-nodal serendipity interpolation function for displacement, ½HðxÞ� is the C1-

continuous implicit Hermitian interpolation function for plastic strain, which has been discussed in detail

separately (Chen and Yuan, 2002; Yuan and Chen, 2002a,b). ½N1ðxÞ� is the interpolation function for the

plastic multiplier. Details of the present algorithm are reported in our previous paper on the computational

algorithm (Chen and Yuan, 2002).

Considering finite strain assumptions, the equilibrium equation (12) at the current configuration can be
simply written as (ABAQUS, 2001)
Z

V
rd$vdV ¼ 0: ð18Þ
Fig. 1. The C1 element with k as internal nodes introduced for nonlocal damage model.
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To solve the nonlinear differential integro-equation, one uses the Newton iteration method. Setting

r ¼ r0 þ _rrdt, the equation above can be converted into
Z
V
_rrd$vdtdV ¼ dF ð19Þ
with the residuum force in the spatial coordinates
dF ¼ �
Z
V
r0 d$vdV : ð20Þ
In the expression r0 stands for total stress tensor of the last increment step in the current configuration. _rr is

the rate of Cauchy stress tensor and $v denotes the gradient of the deformation rate. The objective stress
rate at the current configuration, the Jaumann stress rate, r�, which is suitable in the constitutive relation, is

defined in ABAQUS (2001)
r� ¼ _rrþ r �DþD � r� r � $v� $v � r ð21Þ

with the strain rate tensor
D ¼ 1
2
ð$vþ v$Þ: ð22Þ
Then Eq. (19) becomes (ABAQUS, 2001)
Z
V

r� dD

�
� 1

2
rdð2DDT � $v � v$Þ

�
dV ¼ dF : ð23Þ
Substituting Eqs. (15)–(17) into (23), (13), (14), the governing equations can be re-written as
Z
V
BTr� þ r

oN

ox

� �T
oN

ox

"
� 2BTB

#
dV ¼ Fr; ð24Þ

Z
V
NT

1

oU
or

_rr

�
þ oU
ory

_rry þ
oU
of

_ff
�
dV ¼ Fe; ð25Þ

Z
V
HT ð1
�

� f Þry
_�ee�eep � _kkr

oU
or

�
dV ¼ 0: ð26Þ
In equations above B is the strain–displacement relation matrix. The last parentheses in (24) are the part

of geometric stiffness matrix (ABAQUS, 2001). Eq. (25) is derived from the weak form of the yield

condition (13) by differentiating the potential function about r, ry and f . The residuum forces are expressed

by
Fr ¼ �
Z
V
BTr0 dV ; ð27Þ

Fe ¼ �
Z
V
NT

1U
0 dV ð28Þ
with U0 as the residuum of the yield function U from the last iteration step.
The plastic multiplier k is treated as an internal variable in the finite element formulation which will be

solved for each element. On the other hand, during plastic loading and unloading, the Kuhn–Tucker

conditions
_kkP 0; Uð�eep;r2�eepÞ6 0; _kkUð�eep;r2�eepÞ ¼ 0 ð29Þ
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must be fulfilled in each Gauss integration point. Since the yield condition is enforced for an element

globally, care should be taken in the numerical handling.

The plastic multiplier vector Kinternal denotes the value of k on the four Gauss points of each element (Fig.

1). It is an internal vector of an element. At the Gauss points, if U < 0, the Gauss point is elastic and _kk is
forced to zero. It follows that the second governing equation becomes trivial. On the other case, if U > 0,

the point is judged to plastic and the governing equation
R
V N

T
1Uð�eep;r2�eepÞdV ¼ 0 has to be satisfied. The

condition _kkUð�eep;r2�eepÞ ¼ 0 is achieved at all plastic Gauss points.

In the 8-nodal C1-continuous Hermitian interpolation, vanishing of the global residual vector,R
V H

T½ð1� f Þry
_�ee�eep � roU=or _kk�dV , follows that the integrand ð1� f Þry

_�ee�eep � roU=or _kk approaches zero at all

plastic Gauss points in the element. Thus, the classical Kuhn–Tucker conditions (29) are fulfilled. The

integral formulation is equivalent to the discrete condition. The discrete Kuhn–Tucker condition suggested

by Ramaswamy and Aravas (1998) can be avoided.
Introducing additional higher order gradients into the governing equations, one needs more boundary

conditions to maintain the uniqueness of the solution. Except the conventional displacement and traction

boundary conditions, we have to formulate additional boundary conditions for the plastic strains.

M€uuhlhaus and Aifantis (1991) introduced
o�eep

on
¼ 0 ð30Þ
as the additional boundary condition along the plastic boundary. Additionally, Pamin (1994) suggested
o2�eep

onom
¼ 0 ð31Þ
to suppress the system singularity. In the equation above n and m denote the normal and tangent vector of
the plastic boundary, respectively. Since we introduce terms with the second order of differentiation into the

constitutive equation, the two independent conditions will maintain the uniqueness of the plasticity solu-

tion. According to analysis of Pamin (1994) this condition assures the correct rank of the stiffness matrix.

Frankly speaking, these boundary conditions are rather artificial from the point of view of continuum

mechanics. Whereas (31) is a direct consequence of (30), Eq. (30) itself requires a smooth diminishing of the

equivalent plastic strain to the elastic zone. If the plastic zone is bounded by the specimen boundary,

however, such boundary condition could be over-restrained. It remains an open issue within the gradient

plasticity for more detailed analysis of the constitutive equations.
3. Constitutive parameters

Material damage in a German reactor pressure vessel steel, 20 MnMoNi55, is considered. Extensive

experiments have been conducted within a European research program (Krompholz et al., 2000a,b). Dif-
ferent scaled, geometry-similar specimens are tested and documented. In this work the experimental records

are taken as reference to examine computational predictions based on both conventional GTN damage

model and nonlocal damage model.

It is usual that the stress–strain curve is taken from uniaxial tension tests. In such process one assumes

that the experimental records are not affected by the specimen size, provided that the material is homo-

geneous. To identify the parameters of elastic-plasticity behaviour we only use the data up to the stress

maximum points from uniaxial tension tests. Beyond the ultimate stress point the specimen deformations

are affected by material damage substantially. For computations, the stress–strain curve beyond the ulti-
mate stress point is extrapolated using the same power-law with a unique strain hardening exponent.

According to our fitting the material parameters are set as following: Young�s modulus E ¼ 500r0, the
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initial yield stress r0 ¼ 435 MPa, the strain hardening exponent n ¼ 7:25. The uniaxial stress–strain relation

can be expressed as
Fig. 2.

compu

n ¼ 7:2
r ¼
Ee 06 e6 0:002;
r0 0:002 < e6 0:01;
ar0ðe� e0Þð1=nÞ e > 0:01:

8<
: ð32Þ
with e0 ¼ 0:0087, a ¼ 2:5 is a fitting parameter. The power-law above is plotted together with the experi-

mental results in Fig. 2. Up to the over-proportional increasing of the true stress due to high stress tri-

axiality and necking, the supposed stress–strain relation fits the experimental record well.

For identifying the material parameters in the GTN damage model, we need the experimental records

beyond the ultimate stress point. Generally speaking, we can neglect size effects in the largest specimen to
find out the best fit. As discussed by Yuan et al. (2003a) the element size does not affect the prediction of

material failure in uniaxial tensile specimens. It implies that we may identify parameters in the GTN model

from any uniaxial experiment using an arbitrarily fine mesh.

From analysis of the GTN model we know the parameters q1 ¼ 1:5 and q2 ¼ 1 for ductile materials.

Assuming the initial porosity will change the maximum stress level in the uniaxial tension simulation. We

set f0 ¼ 0:001 and without void nucleation fN ¼ 0. The critical porosity describes coalescence of voids and

characterizes the instable point in the uniaxial tension tests. fc ¼ 0:01 gives us a reasonable prediction in all

tension specimens.
To consider rapid expansion of voids beyond the critical porosity fc, Tvergaard and Needleman (1984)

introduced bi-linear extrapolation of the porosity in the constitutive equation (1), that is, the void volume

function f in Eq. (1) is replace by f � defined as
f � ¼ f if f 6 fc;
fc þ Kðf � fcÞ if f P fc;

�
ð33Þ
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Fig. 3. Comparison between the experimental and computational results of the smooth tensile specimens. The diameters of the spe-

cimens are 3, 9 and 30 mm, respectively. The computations are conducted using the nonlocal damage model with a length scale

parameter l ¼ 0:24 mm.
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with K ¼ 3 as an additional damage parameter. To prevent numerical difficulty after material failure, the

final flow stress is limited to ten percent of the initial yield stress after void coalescence. It means the

material does not lose whole loading capacity.

Identifying the material length parameter is a special task in the present nonlocal damage. From dis-

cussion by Yuan and Chen (2000, 2002a,b) the material length is related to plastic deformations and de-

scribes localized plastic deformations. The parameter can be determined from the micro-indentation tests.

For the present material the micro-indentation tests have not been performed. The material length will be

determined based on numerical experiments. Summarizing the simulations of different specimens we find
the material length should be between 0.2–0.3 mm. In our computational investigations presented in the

following section we set l ¼ 0:24 mm. The computational results are plotted in Fig. 3 together with the

experimental records. In the figure R1, R2 and R3 denote different sized specimens. R3 is ten times as large

as R1.

The finite element width in the cell model cannot be found from the uniaxial tension. Usually one de-

termines this length from notched or cracked specimens to fit the experimental result (Brocks et al., 1995;

Sun and H€oonig, 1994; Xia and Shih, 1995). In this work we have varied the element length systematically

and to show the effects in predicting specimen load capacity in the next section.
4. Results for notched specimens

To investigate the size effect three different sized specimens have been tested by Krompholz et al. (2000b).

The specimen geometry is plotted in Fig. 4. Three specimens are scaled by factor 1, 3 and 10, which are

termed T1, T2 and T3, respectively. Should there be no size effects, nondimensionalized experimental re-

sults will fall into a single curve. In experiments both local and global displacements have been measured. It

is observed that the local displacements around the notch vary with the specimen size (Krompholz et al.,
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2000b). The displacements in the largest specimen are stronger concentrated to the notch. The small

specimen shows a smoother displacement variation.

In computations using the cell model we set the element size near to the notch to 0.3 mm · 0.5 mm. Since

the element size is the same for all three specimens, it follows that the smallest specimen T1 only has 4

elements in the symmetric ligament. Generally speaking a coarser element mesh will arise the load capacity

of the specimen slightly. This effect can be observed in the following discussions. For three specimen we
vary the mesh proportionally so that the element size for all specimens remains the same. It has been shown

that further variations of the element size will not substantially change computational results for the present

work.

For the nonlocal damage model the element size is, generally speaking, insignificant to the computa-

tional results which has been confirmed based on extensive computational verifications (Chen and Yuan,

2002; Yuan et al., 2003a). The Laplacian term in the effective yield stress evaluation remedies the depen-

dence on the numerical discretization even when the material displays strong instable behaviour.

For comparison purpose the computational results from both cell model and nonlocal damage model are
plotted together with the corresponding experimental records. In Fig. 5 the mean stress defined as the

traction divided by the initial cross area of the specimen is shown as a function of the axial elongation.

There are two experimental records plotted in the figure. In the research program of Krompholz et al.

(2000b) much more specimens have been tested. The two representative experimental records stand for the

scattering borders of the material properties. It is obvious that the same material scattering will change the

mean stress curves of the small specimens more significantly than those of the large ones.

From the figures one may see that for the same scaled elongation the mean stress of the smallest

specimen T1 is significantly larger than that in the other specimens T2 and T3. T1 also reaches higher
ultimate stress. Specimens T2 and T3 do not display obvious influence of the specimen size. This experi-

mental observation can be modeled using the nonlocal damage model very well as shown in the mean stress

versus elongation curves (Fig. 5(b)), but not the cell model (Fig. 5(a)) using the conventional GTN equation

(1). In the mean stress versus necking curves the effect from averaging the porosity in the cell model seems

too weak to change the global traction. Only in the instable fracture phase the T1 in the cell model shows
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slightly higher strength than the larger specimens. In the nonlocal computations the iterations fail to
converge for instable crack propagation.

Fig. 6 shows, furthermore, a good agreement in elongation versus necking relations for the large

specimens using both computational models. In small necking region the experimental records contain

rather large scattering, where the size effects are not essential, and at large displacements the computational

curves reproduce experimental measurements very well. The smallest notched specimen displays signifi-

cantly higher loading capacity than the others do. This feature can be clearly identified in the nonlocal

model computation, but not in the cell model. The similar results are plotted in Fig. 7 in which the

elongation is shown as a function of the necking.
The reason for such results can be found in variations of the equivalent plastic strains which are sum-

marized in Figs. 8 and 9. For both models we use the reduced integration technique in the finite element

method (ABAQUS, 2001). It follows that the distribution of the equivalent plastic strain within an element

is a linear function of the location. For the smallest specimen T1 in the cell model (Fig. 8) only four equal-

sized elements have been used in the radial direction, whereas T3 has forty elements. It follows significantly

different distribution due to the different numerical descritizations. Originally one hopes that the coarse

element with linear plastic strain distribution may eliminate the strain localization and so reaches the

certain crack initiation load. From Fig. 8 one may say that such a delay in material failure is rather artificial
and depends substantially on the strain gradient variation, that is, on the notch geometry and the load

configuration. In our case the amplitudes of the porosity in both specimens are in the same level so that the

further evolution of the material damage is not affected by the specimen size. Therefore, one does not see

effects of the element size, i.e. the element size does not happen to fit the expected delay of the crack ini-

tiation and the size effect can not predicted by the cell model.

In Fig. 9 development of the porosity from the nonlocal damage model is summarized. In the figure the

porosity is expressed as a function of the normalized specimen radius R=R0. The distribution is smoothed

due to the C1 interpolation. It is to see that for the same elongation the damage zone concentrates strongly
in the center of the large specimen and the material loses its load capacity in the specimen center quickly. In
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the smallest specimen T1 the distribution of the porosity is more homogeneous in the radial direction due to

effects of the material length l than T3. l affects evolution of plastic strains and so the porosity. It follows

that the material failure begins earlier in T3 than that in T1. In a nondimensionalized diagram the small
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specimen has higher loading capacity than the large one. In plastic deformations we see that the smallest
specimen contains much more plastic energy in a unit volume than in the large specimen, it delays pro-
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pagation of the damage zone. This observation gives an understandable explanation of the size effect in the

present experiments.

In the nonlocal model variations of the plastic strain are controlled by the material length introduced for

the gradient plasticity. The plastic strain distribution is independent of the finite element mesh. The nu-
merical integration and descritization are features of the mathematical approximation method. Short-

coming in a constitutive model cannot be compensated by changing computational accuracy.

In the GTN model the porosity distributes similarly to the plastic strain which is given by the consti-

tutive equation. The porosity from the nonlocal damage model, however, is affected by the absolute

specimen size, that is, the ratio of the specimen size to the material length. It makes the prediction of the

specimen failure varies with the specimen size. By changing the scaling factor of the notched tensile

specimens we may obtain systematic variations of the loading capacity of the specimen. Using the nonlocal

model we are able to give a computational prediction of the size-dependent material failure.
Based on extensive computations of the various scaling factors, we can show that there is a general

relation between the size effect and the material length parameter as
Fig. 10

and ne
U ¼ U0 1

�
þ jl2

D2

�
; ð34Þ
where U denotes a characteristic deformation at specimen fracture, e.g. notch opening displacement,

necking etc. U0 represents the characteristic displacement in the same kind of notched tension specimens

without size effects, i.e. l � 0. j is a geometric factor of the characteristic displacement. For the notch

opening displacement j is about 1. This equation is verified based on numerous finite element computations

using different l values, as shown in Fig. 10.

This expression is of great interesting for predict size effects in ductile materials and valid for the local

displacement with significant plastic deformations. It generally means that for a given material, i.e. for a

given l, the local displacements at material failure depend on inverse of square of the characteristic specimen
size, that is,
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U ¼ O
l2

D2

� �
: ð35Þ
From a given specimen one may extrapolate the displacement for any other sized specimen.

Furthermore, one may image to relate this relation with general fracture criterion. From fracture me-

chanics we know that the crack tip opening displacement (CTOD) is linearly correlated with the J -integral.
Using the relation (34) one may image
J ¼ J0 1

�
þ jl2

a2

�
; ð36Þ
where J0 denotes a critical value in a reference specimen and a a characteristic size of the specimen to be

considered. Should Eq. (36) be valid for the crack specimen, the size effect can be analytically integrated

into the J -integral criterion directly. To finalize this concept more extensive researches are necessary.
5. Conclusions

Systematic experimental results confirm material failure displays significant size effects which are related

to strain gradients. The smallest notched specimen possesses significantly higher nondimensionalized

loading capacity than the larger specimens. One may expect more significant deviations in a sharper not-

ched or smaller specimen.
The cell model based on the GTN damage model cannot reproduce the experimental measurements of

the smallest specimen. The smoothing strain variations in a damaged element by using constant element size

may not induce such strong nonlocal effects in the computation that the global load will be changed. This

prediction is not contradictory to the known results. One may image the applicability of the cell model is

strongly related to the strain gradient distributions around the damaged zone. For sharp notches or even

cracks the smoothing strain variations in a conventional element is more effective than that in weakly

notched specimens with low strain gradients. Our examples show averaging the strain distribution within an

element may not be enough for a reliable material failure prediction.
The size effect can be caught by the nonlocal damage model modified from the known GTN model.

Predictions of specimen failure do not depend on the artificial finite element size. Further variations of the

specimen size display that the local displacements at material failure are a square function of the intrinsic

material length. The size effect can be observed only if the specimen dimension approaches the order of the

material length.
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